Counting rational points on a certain exponential-algebraic surface

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting rational points on a certain exponential-algebraic surface

We study the distribution of rational points on a certain exponential-algebraic surface andwe prove, for this surface, a conjecture of A. J. Wilkie. 2000 Mathematics Subject Classification: 11G99, 03C64

متن کامل

Counting Rational Points on Algebraic Varieties

In these lectures we will be interested in solutions to Diophantine equations F (x1, . . . , xn) = 0, where F is an absolutely irreducible polynomial with integer coefficients, and the solutions are to satisfy (x1, . . . , xn) ∈ Z. Such an equation represents a hypersurface in A, and we may prefer to talk of integer points on this hypersurface, rather than solutions to the corresponding Diophan...

متن کامل

Counting Rational Points on Algebraic Varieties

For any N ≥ 2, let Z ⊂ P be a geometrically integral algebraic variety of degree d. This paper is concerned with the number NZ(B) of Q-rational points on Z which have height at most B. For any ε > 0 we establish the estimate NZ(B) = Od,ε,N (B ), provided that d ≥ 6. As indicated, the implied constant depends at most upon d, ε and N . Mathematics Subject Classification (2000): 11G35 (14G05)

متن کامل

Theory L . Caporaso COUNTING RATIONAL POINTS ON ALGEBRAIC CURVES

We describe recent developments on the problem of finding examples of algebraic curves of genus at least 2 having the largest possible number of rational points. This question is related to the Conjectures of Lang on the distribution of rational points on the varieties of general type.

متن کامل

Counting Rational Points on Hypersurfaces

For any n ≥ 2, let F ∈ Z[x1, . . . , xn] be a form of degree d ≥ 2, which produces a geometrically irreducible hypersurface in P. This paper is concerned with the number N(F ; B) of rational points on F = 0 which have height at most B. For any ε > 0 we establish the estimate N(F ; B) = O(B), whenever either n ≤ 5 or the hypersurface is not a union of lines. Here the implied constant depends at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2010

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2530